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● Machine Translation (MT) popularity

○ Neural Paradigm: data-driven approach
○ Increasingly fluent and adequate translations
○ Improvements on syntax, lexicon, morphology (Bentivogli et al, 2016)
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→ but gender translation is an issue



GENDER BIAS IN MT
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Analyses and real-world use prove that MT shows biased behaviours with 
respect to gender, leading to different types of harms:

Under-representation 

> “masculine skew”
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Analyses and real-world use prove that MT shows biased behaviours with 
respect to gender, leading to different types of harms:

Stereotyping

> stereotypical associations e.g. 
pretty engineer as feminine
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Analyses and real-world use prove that MT shows biased behaviours with 
respect to gender, leading to different types of harms:

Luisa Bentivogli, short bio

Quality of service

> worse performance for women

https://ict.fbk.eu/people/detail/luisa-bentivogli/


GENDER BIAS IN MT: OUTLINE
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Assessing MitigatingUnderstanding



WHAT ARE THE SOURCES OF BIAS?
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MT models are fed with (lots) of parallel data and learn patterns across 
languages from such training data 

       Understanding

Image credit: Vasily Zubarev

https://vas3k.com/blog/machine_translation/
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● … systems’ ability in learning patterns turns into weakness as 
training data can encode gender disparities

       Understanding

xkcd.com

https://xkcd.com/385/
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● … systems’ ability in learning patterns turns into weakness as 
training data can encode gender disparities

       Understanding

 BUT

> Training data bias as an overloaded term (Suresh and Guttard, 2019) 

> Different sources of bias (Friedman & Nissenbaum, 1996)



WHAT ARE THE SOURCES OF BIAS?
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● Pre-existing bias: rooted in practices, institutions, attitudes

❖ Europarl Corpus (Kohen, 2005)

■ 30% sentences uttered by women (Vanmassenhove et al., 2018)

■ 40% highest peak of Women in the EU Parliament (Women 
infographics)

→  glass ceiling that has hampered women’s access to political positions

      

       Understanding



● Pre-existing bias: rooted in practices, institutions, attitudes

❖ Europarl Corpus (Kohen, 2005)

❖ Social Connotations and Language use
■ explicit female markings for doctor (female, woman or lady 

doctor) (Romaine, 2001)

→ qualitative asymmetries regarding how linguistic expressions are connoted, 
deployed and perceived 

      

WHAT ARE THE SOURCES OF BIAS?
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       Understanding



● Technical bias: due to technical constraints and decisions

○ Data curation/data annotation
■ how are data processed and annotated? (Wagner et al., 2016)

○ Models design
■ algorithmic bias that leads under-represented feminine forms to further 

decrease in an MT output (Vanmassenhove et al., 2020,2021)

○ Evaluation procedure
■ gender asymmetries in test data reward biased predictions (Sun et al., 2019)

■ inadequate choice of evaluation metrics (e.g. aggregate measures can 
hide subgroup underperformance) (Mitchell et al., 2018)

WHAT ARE THE SOURCES OF BIAS?
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       Understanding



….Traditional metrics and Generic Test sets are unsuitable

>>> Gender Bias Evaluation Test Sets (GBETs) (Sun et al,. 2019)

 → isolate gender as a variable 
→ MT GBETS: challenge or natural datasets 
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ASSESSING GENDER BIAS
Assessing



● Challenge datasets 
(Prates et al., 2018; Cho et al., 2019; Escudé Font & Costa-jussà, 2019; Stanovsky et al., 2019)

→ synthetic ad-hoc sentences focusing on (occupational) stereotypes
→ controlled environment but… limited variety of phenomena, easy to overfit

→ 
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GBET BENCHMARKS
Assessing

WinoMT (Stanovsky et al., 2019)
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GBET BENCHMARKS
Assessing

● Challenge datasets 
(Prates et al., 2018; Cho et al., 2019; Escudé Font & Costa-jussà, 2019; Stanovsky et al., 2019)

● Natural datasets 
(Habash et al., 2019; Bentivogli et al., 2020)

→  selected and annotated gender instances from conversational language
→ more authentic conditions but.. treat all gendered words equally

→ 

MuST-SHE (Bentivogli et al., 2020)

Src She’d get together two of her dearest friends, these older women...

Ref-IT Tornava per incontrare un paio delle sue più care amiche, queste signore anziane



● Challenge datasets 
(Prates et al., 2018; Cho et al., 2019; Escudé Font & Costa-jussà, 2019; Stanovsky et al., 2019)

● Natural datasets 
(Habash et al., 2019; Bentivogli et al., 2020)

>> Benchmarks are formalizations and respond to different 
conceptualization of bias (Barocas et al., 2019)

>> Relevant to monitor system’s behaviour and mitigating strategies

→ 
17

GBET BENCHMARKS
Assessing



Different strategies:

1. Counterfactual data augmentation (CDA) - based (Saunders & Byrne, 2020)

2. Gender Tagging (Vanmassenhove et al., 2018; Stafanovičs  et  al., 2020)

3. Gender Re-Inflection (Habash et al., 2019; Alhafni et al., 2020)

MITIGATING APPROACHES
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Mitigating

 >> Interventions accounting for ‘’technical bias’’



● Based on counterfactual data augmentation (CDA) (Saunders & Byrne, 2020)

○ CDA: creation of synthetic sentences with balanced F/M representation
○ MT model is fine-tuned on such a parallel set
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Mitigating

Src The [PROFESSION] finished [his|her] work.

It-M Ref [PROFESSION] ha finito il suo lavoro.

It-F Ref [PROFESSION] ha finito il suo lavoro.

MITIGATING APPROACHES



● Based on counterfactual data augmentation (CDA) (Saunders & Byrne, 2020)

○ CDA: creation of synthetic sentences with balanced F/M representation
○ MT model is fine-tuned on such a parallel set

→ Helpful for stereotyping scenario with pre-defined list of lexicon, but does not 
cover under-representation on variable language data
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Mitigating

Src The [PROFESSION] finished [his|her] work.

It-M Ref [PROFESSION] ha finito il suo lavoro.

It-F Ref [PROFESSION] ha finito il suo lavoro.

MITIGATING APPROACHES



● Gender Tagging (Vanmassenhove et al., 2018)

○ Fed a <F>, <M>  tag representing speaker’s gender to each source 
sentence, both at training and inference time 

21

Mitigating

<F>, <M>
training data

Training enhanced 
MT Model

Prediction

source sentence:
I am a student + <F>,<M>

automatic
translation

te
st

MITIGATING APPROACHES



● Gender Tagging (Vanmassenhove et al., 2020)

○ Fed a <F>, <M>  tag representing speaker’s gender to each source 
sentence, both at training and inference time 

→ requires acquiring metadata and knowing speaker’s gender in advance 
     (not always feasible)
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Mitigating

MITIGATING APPROACHES
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Mitigating

● Gender Re-inflection (Habash et al., 2019; Alhafni et al., 2020)

○ Scenario: 1-st person references to the speaker (e.g., I am a student)

○ Post-processing component re-inflecting into masculine/feminine forms 

■ the component always produces both forms from an MT output

■ the user chooses the appropriate form

MITIGATING APPROACHES
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Mitigating

● Gender Re-inflection (Habash et al., 2019; Alhafni et al., 2020)

→ double output implemented by Google Translate

… only available for certain languages

MITIGATING APPROACHES
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Mitigating

● Gender Re-inflection (Habash et al., 2019; Alhafni et al., 2020)

→ double output implemented by Google Translate

… only available for certain languages, mostly for single words

MITIGATING APPROACHES
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● No conclusive state-of-the-art method for mitigating bias
○ Response to specific aspects of the problem with modular solutions

● Gender bias in MT is a socio-technical problem 
○ engineering interventions alone are not a panacea 
○ integration with long-term multidisciplinary commitment and practices 

Mitigating

There is plenty of  (interdisciplinary) ground to cover...

MITIGATING APPROACHES



TO CONCLUDE: where to?
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(1) GENDER-NEUTRAL LANGUAGE

Except for one work in MT (Saunders et al., 2020), work on gender bias has focused on 
binary masculine/feminine dichotomy

● Indirect Non-binary Language: overcomes gender specifications

○ using e.g. humankind vs. mankind; service vs. waiter and waitress

○ endorsed for many official documents (Papadimoulis, 2018)

○ a challenging goal for grammatical gender languages



(2)  HUMAN-IN-THE-LOOP

Language technologies are built for people…
→ but to date evaluations on gender bias in MT are restricted to lab tests

● Studies relying on participatory design and HCI approaches(Liebling et al., 2020, 

Cercas Curry et al., 2020)

● Consider different MT users… Translators included  (Ragni & Vieira, 2020)

TO CONCLUDE: where to?

28



(2)  HUMAN-IN-THE-LOOP

Language technologies are built by people…

● Gender bias attested also for rule-based MT 
         (Frank et al., 2004)

● lack of feminine forms in dictionaries
● lack of morphological rules for feminine

TO CONCLUDE: where to?
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(2)  HUMAN-IN-THE-LOOP

Language technologies are built by people…

● reflect on the background, diversity and biases of people involved in the MT 
pipeline - annotators, translators, developers - and its implications on the 
models

TO CONCLUDE: where to?

30



31

Thanks
for listening!

beatrice.savoldi@unitn.it

@fbk_mt     @BeatriceSavoldi

mailto:beatrice.savoldi@unitn.it
https://twitter.com/fbk_mt

